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 The tetrakaidecahedron within the 
 dimensional boundary chord model  
 
15.1  Crystal form and symmetry 
So far within the dimensional boundary chord 
model of the nucleus, the emphasis has more or 
less been levelled at the environment in which 
early processes have one way or another, led to 
the universe we see today. Central to these many 
processes however, is the tetrakaidecahedron and 
this plays what probably amounts to the 'lead 
role’ in this story. 
 
As whole surviving teddies 'ping' into what would 
become our space, they would need to evolve in 
order to eventually produce the elements, the 
molecules and ultimately us. Just how this 
evolution would occur, would depend on the 
environment and the very nature of the 
tetrakaidecahedron itself. It is by definition, a 
fourteen-sided polyhedron (originally), but this 
would change as it evolves into the neutron and 
proton. Its original geometry would however, 
have at least some bearing on what would happen 
to it and this would have to be an important 
consideration when discussing processes and 
events that would ultimately involve it. By 
describing it simply as a ‘fourteen-sided 
polyhedron’, doesn't actually say a lot about it or 
its nature and the teddy will need to be looked at 
in a little more detail in order to try to establish 
just what its characteristics may have contributed 
to the further evolution of a universe. 
 
One of the most important facets of the teddy's 
characteristics would be how its structure affects 
subsequent evolution, such as the bonding of the 
elements during nucleosynthesis (dealt with in 
somewhat more detail within the next of these 
chapters) and the later combination of these into 
the familiar molecules from which much of our 
world is constructed. Is there a definitive link 
between this structure and what we find around 
us? This chapter will briefly try to explore the 
possibility of a connection between this model's 
geometric origin within an eighth-dimensional 
environment and the geometry we find around us 
at the smallest of scales today. For example, the 
very way that electrons are believed to configure

 
themselves within the atom’s various orbitals, 
appears very reminiscent of this basic geometry.  
 
Earlier chapters in this submission have tried to 
establish a 'rule-of-thumb' that strongly involved 
'provenance' - or a connection between what has 
happened in the past - and what IS occurring in 
the present. This would provide a 'reason' as to 
WHY things happen; not just why stars or galaxies 
form; or why helium can be synthesised from 
super-heated hydrogen - but why certain elements 
simply look and behave the way they do. This 
provenance (if it surely exists) will not just 
provide a connection out there in the depths of 
space - but here too - and at every conceivable 
scale. It will provide an explanation as to why 
certain combinations of molecules will combine 
the way they do and why they may also grow into 
a set crystalline form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.1.01  The symmetry assigned to the 
tetrakaidecahedron’s original 'S' faces and their 
identification within the dimensional boundary chord 
model. 
 
This particular chapter will therefore try to delve 
a little deeper into these questions and attempt to 
unravel the nature of the tetrakaidecahedron; the 
ultimate universal building block. While the early 
evolution of the lighter elements would be

15 
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dependent on what was happening within the 
environment at the time, it would be the very 
nature of the whole surviving teddy (now the 
proton), that would determine just how this 
bonding process came about. An important 
consideration of the teddy's characteristics during 
this early episode of nucleosynthesis would be its 
SYMMETRY - and this concept should be looked 
at a little more closely. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.1.02  The crystalline cube is (not 
surprisingly) of the cubic system and is a combination 
of three distinct forms. These are the cubic ('X'); 
rhomb-dodecahedron ('Y') and octahedron ('Z') forms, 
producing a total of thirteen axes and nine symmetry 
planes. 
 
The tetrakaidecahedron (in this model at least) 
would be the original polyhedron. It is the only 
shape that can be produced by the pressure 
modification of 4D spherical (expansional) events 
during the vacuum collapse that would herald the 
creation of the eighth-dimensional level. The 
teddy would at this time, be just a small integral 
component of a much larger homogeneous 8D 
lattice, but this structure would already have been 
determined back in the lower fourth-dimension. 
The continuity of structure would at the time, 
provide the lattice with a 'singular' characteristic 
and whereas the boundary chords have been 
described as individuals within their later 3D/4D

 
setting, within this 8D lattice, they would be ONE 
chord. The tetrakaidecahedron's symmetry is 
rather subtle however (see Figure 15.1.01 on the 
previous page) and can be defined as a 
polyhedron (or indeed a crystal for that matter) 
that results from the combination of two specific 
crystal forms1. This may best be illustrated with 
the help of a simple crystalline cube that can be 
used here as a starting point (see Figure 15.1.02 
in the previous column). 
 
The humble cube (perhaps not that surprisingly), 
is crystallographically of the cubic system - one of 
the seven main groups known as the crystal 
system (but also referred to as 'essential’ axes of 
symmetry). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.1.03  Although larger and more numerous, 
the hexagonal faces of the teddy are actually 
'subsidiary' faces - which are normal to the subsidiary 
octahedral axes. 
 
In the cubic system, we have the original 'six' 
faces that make up the cube (labelled 'X' in 
Figure 15.2.02); each parallel pair of which is 
normal to the axis that runs between them. There 
are however subsidiary elements of symmetry and 
only one class of crystal in each of the seven 
groups possesses a maximum number of these 
symmetry elements. This single class is referred 
to as a holosymmetric class. In the cubic system, 
the cube itself is a member of this holosymmetric 
class and this too is inferred within the 
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illustration. As well as the six original faces, we 
can have faces that bevel the edges of these 
originals; (labelled 'Y' in the figure). There will 
be a total of twelve of these and they represent 
what is known as the rhombdodecahedron form. 
 
A further set of faces can symmetrically truncate 
the original eight coigns of the cube (the original 
corners) and these represent what are known as 
the octahedron form (labelled as 'Z' in Figure 
15.2.02). This produces a combination of three 
different forms and the holosymmetric qualities 
of the cube can therefore be said to comprise the 
combination of three distinct forms (cubic, 
rhombdodecahedron and octahedron); each of 
which can exist independently of one another. By 
connecting an imaginary axis between each 
parallel pair of faces, the cube will end up with a 
total of thirteen axes and nine symmetry planes 
and as these are the maximum number of 
symmetry elements that this particular group can 
possess - this actually defines this crystalline cube 
as its own group's cubic holosymmetric class. 
 
The octahedral planes (which naturally form 
hexagons in the illustration because of their 
incidence against adjacent faces); could be 
imagined in this scenario, to grow outwardly 
larger (especially at the expense of their 
neighbouring rhombdodecahedral faces); until the 
twin-form shape of the tetrakaidecahedron 
ultimately appears. As a result, the 
rhombdodecahedron faces shown in the figure, 
would disappear completely (as would their axes) 
and the cubic faces would have to shrink 
markedly as a consequence (eaten up by the 
growing hexagons that now mark the faces of the 
octahedron form). 
 
This resulting crystalline tetrakaidecahedron (or 
'teddy' as it is affectionately known in this model) 
would still however, be a member of the cubic 
system - even though it has reconfigured from a 
three-form to a twin-form combination. It would 
also appear to casual observation that the larger 
and more numerous hexagonal faces make up the 
'primary' elements of the tetrakaidecahedron - but 
it would still be the smaller, square faces that are 
aligned with the primary or essential cubic axes.

 
The hexagonal faces are actually normal to the 
subsidiary octahedral axes. 
 
The apparent crystal system of the 
tetrakaidecahedron can also be analysed with a 
procedure known as stereographic projection 
which, up until the more recent availability of X-
ray diffraction techniques, was the primary 
method used for determining crystal structure. 
Although this procedure will not be described in 
detail here, such analysis was most usually 
achieved in two-dimensions using what is known 
as the stereographic (or Wulff) net - but with the 
advent of good, 3D modelling programmes such 
as AutoDesk's AutoCAD and 3DSMax (both used 
extensively by the author), similar results can be 
achieved a lot less laboriously - and in much 
greater detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.1.04 3D stereographic projection of the 
teddy. The great sphere has been omitted for clarity, 
but the connected face poles above the equatorial plane 
represent where these points intersect the sphere's 
surface. 
 
Suffice to say that stereographic projection 
imagines the uppermost 'slice' of a crystal placed 
at the centre of a much larger sphere and the axes 
normal to each crystalline face (usually referred 
to as the face-poles) are extended outwards until 
they intersect the surface of this sphere. These 
produce points that basically transfer the position 
of these faces in three-dimensional space to a new
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position now on the sphere itself. These points are 
then all projected towards the south pole of the 
sphere and where they intersect the equatorial 
plane, produce a unique plot of these points on 
what is now a two-dimensional surface, known as 
the plane of projection. Each two-dimensional 
point now represents a face-pole. The crystal 
structure is thus easily examined from this 2D 
perspective and this has been attempted here 
three-dimensionally, using a hypothetical 
tetrakaidecahedron as the subject (see Figure 
15.1.04 on the previous page).  
 
The projection has been orientated with one of its 
square faces (and thus cubic axis), placed north 
and one placed south; which also means that the 
remaining two cubic axes are orientated in the 
plane of the equator itself. Their points are 
positioned on the outside edge of the plane of 
projection (which is the original equator of the 
sphere) and this is known as the primitive circle 
(see Figure 15.1.05 below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.1.05  The plane of projection produces a 
two-dimensional plot that by convention, represents a 
combination of cubic ('S' points at the centre and 
around the 'primitive circle') and octahedron forms ('H' 
points etc.). 
 
The pattern of these 'S' face poles (or their two-
dimensional equivalent points) produce the 
classic representation of the cubic system in

 
stereographic projection - as do the octahedral 
axes prove their own configuration as represented 
in the figure by the points marked H1(n), H2(n) 
etc..  
 
It will have been noticed that only the 'north' 
poles of the 'H' faces are shown in the projection 
and this is of course due to the fact that only the 
top slice - or northern half of any particular 
crystal is used in this analysis. In all, this is 
merely another way of confirming that the 
tetrakaidecahedron is of the cubic system. By 
convention then, a tetrakaidecahedron in crystal 
form, should be of a combination of two forms 
(cubic and octahedron) and be of the cubic crystal 
system to boot. In reality, it is actually extremely 
difficult to find these bodies in mineral form at all 
and even more difficult to find any reference to 
them in works on the subject. The teddy is 
certainly a bit of a quandary; at least 
crystallographically speaking. 
 
 
15.2  Reconfigured geometry 
The original whole surviving teddy is however, 
no longer a perfectly symmetrical two-form 
crystal with well defined faces and edges of all 
the same length. In this model and not long after 
its appearance in four-dimensional space, it 
would have reconfigured as environmental 
conditions (now so very different from the 8D 
lattice in which it formed), played their part - all 
in collusion with its own in-built face-spin bias 
that was inherited from the big-snap. This 
characteristic can be thought of as a rotational 
tendency caused by the chords around the 
circumference of the hexagonal faces. As whole 
surviving teddies and their independent boundary 
chord relatives separated from this eighth-
dimensional lattice (see again Chapter Seven), the 
elastic rebound that would have occurred, would 
set this phenomenon in motion. 
 
Not long after the big-ping that followed this 
separation (or dimensional differentiation as this 
was called in an earlier chapter), the teddies 
would evolve into what in this model at least, are 
now the proton and neutron in our world - with 
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their round or circular faces made up from two 
different dimensional boundary chord values (six 
for the previously hexagonal faces and four for 
the previously square). The relationship of these 
new round faces to each other still remains as it 
was prior to reconfiguration and each face is still 
normal to the original crystalline axis (just like 
the hypothetical tetrakaidecahedron used in the 
stereographic projection illustrated earlier). Its 
axes HAVE therefore, remained (crystallo-
graphically) of the cubic crystal system even 
though a significant change has occurred to their 
structure (see Figure 15.2.01 below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.2.01  The faces of the reconfigured whole 
surviving teddy (whether proton or neutron), retain the 
original configuration of their axes. 
 
There is actually something of a philosophical 
question hiding away here that will raise its ugly 
head more than once within this submission. This 
has to do with whether it is simply that 
subsequent bonding of proton to proton (resulting 
in a proton - neutron pair by way of 'S' face to 'S' 
face coupling); is responsible for the fact that the 
'essential' axes of the holosymmetric class of cube 
are of the cubic system in the first place and not 
something else resembling the subsidiary 'H' axes 
shown in Figure 15.1.03); or whether it is indeed 
the other way round? It's a little like the chicken 
and the egg question at the moment, but

 
subsequent discussions will try and clarify this 
position further. We often see repetition in nature 
and this may be the original. In this case, the 
underlying reason for such apparent 'patterns' 
may be the structural configuration of the sub-
atomic components - where both electron and 
molecular patterns 'mirror' those that have 
already occurred within the subject's nucleus. 
 
This may well be the reason why the electron 
shell's configuration right the way through the 
periodic table, seems to obey a single (basic) set 
of rules; that is able to determine where an 
element's electrons are allowed to locate 
themselves. Moving up a scale or two, many 
crystalline structures may have their origin within 
a similar explanation and again, this may be due 
to the larger scale build-up of structure, 
mimicking what has already occurred in the 
nucleus, electron shell and then within molecular 
form. We will have to wait and see. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.2.02  The spherical symmetry of the 
reconfigured teddy superimposed upon a sphere of 
suitable scale. 
 
The symmetry of the tetrakaidecahedron (either 
the original or the reconfigured versions in this 
model) is such that each pair of parallel faces are 
also perfectly in line with each other. This
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produces a situation where the reconfigured teddy 
(either proton or neutron), can be perfectly 
superimposed upon the surface of a suitably 
scaled sphere and each member of a rotational 
group (the round faces) will scribe out a perfect 
segment (see Figure 15.2.02 on the previous 
page). 
 
 
15.3  Spin states 
This particular characteristic of the tetrakaideca-
hedron, may be of assistance when describing the 
function of these reconfigured rotational groups, 
especially when the subject of proton-to-proton 
bonding is discussed (dealt with in the next 
chapter). Because of this perfect spherical fit as it 
were, the mapping of these faces may also be 
possible in terms of the 'Reimann sphere' and this 
approach may be useful in trying to determine the 
'spin' characteristics of this model's proton, which 
must have a direct relationship to the rotational 
groups from which it is comprised. This question 
will be tackled next. 
 
Each component 'loop' of any particular rotational 
pair is orthogonal to its partner - which in this 
context can be taken as meaning opposite. Each 
loop (made up from its constituent boundary 
chord values) also has a component of rotation 
brought about by the imposed face-spin bias 
discussed earlier in this section. Because of their 
configuration, this rotation will be complimentary 
about the same axis and because they are 
orthogonal, these components could be described 
as possessing 'spin', as they rotate around a 
'shared' axis. 
 
As this type of arrangement is reminiscent of the 
quantum geometry of the individual spin states of 
such massive particles as the electron, proton and 
neutron in convention (spin-½), then it may be 
possible to represent any chosen rotational group 
in terms of the Reimann sphere - where this 
surface can represent projective space2 (IP    H2) and 
each point on this sphere can possess a distinct 
spin-½ state. With a rotational group's axis 
orientated north to south and for this exercise, 
arbitrarily attributed with a clockwise rotation;

 
the spin conditions of its two component loops 
can be conventionally described as: 
 
 spin-up       |↑〉(r/handed about the upward 
                                vertical) 
 and, 
 
 spin-down  |↓〉 (r/handed about the down-
                     ward vertical). 
 
The spin states (which have an intimate 
relationship with the complex numbers Ψ0 and Ψ1 
where usually Ψ0 = w and Ψ1 = z); can therefore 
be described as {1,0} for spin-up and {0,1} for 
spin-down and these two (basic) states are 
themselves orthogonal (opposites). 
 
One is therefore presented with a picture that will 
be very similar in nature to that shown in Figure 
15.2.02 on the previous page, although this 
particular sphere will be describing just ONE 
rotational group instead of all seven - and this has 
itself been illustrated as Figure 15.3.01 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.3.01  The spin direction or spin-½ state of a 
rotational group can be ascertained by considering it 
as a Reimann sphere cut through the equator by the 
complex plane. The sphere itself becomes projective 
space. 
 
The Reimann sphere in this particular usage, will 
include a 'complex plane' because of w and z and 
this will quite naturally, cut the equator of the 
sphere itself. As the surface of the Reimann 
sphere represents projective space, it should be
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possible therefore, to determine spin-direction. 
This has a relationship with the complex-plane, 
where: 
 

w |↑〉  +   z |↓〉  =   | ↗ 〉 
 

and where the sign '↗' can be made to represent 
some direction in space; which in turn will be 
found to be some point on the surface of the 
Reimann sphere (which is now actually defined 
as projective space IPH2). Not only does projective 
space become a Reimann sphere - but the teddy's 
rotational group itself could also be considered as 
a Reimann sphere too, especially in this particular 
context. With the complex plane cutting the 
equator of the Reimann sphere, stereographic 
projection can again be used to plot | ↗ 〉(the 
spin direction or spin-½ state in projective space) 
and the position where this projection cuts the 
complex plane, will correspond with the complex 
number 'u' and the complex plane itself (the 
equatorial plane in stereographic projection), can 
now be considered as being representative of the 
ratio u = z/w. 
 
Within the bounds of this particular exercise, the 
illustration of a single rotational group by way of 
the Reimann sphere would seem to mirror that of 
any other spin-½ system - and the determination 
of spin direction would also seem to be 
achievable. The teddy (or proton) in this model 
however, is actually a system with a total of 
SEVEN rotational groups (or actually made up of 
4 x 'H' and 3 x 'S' groups). This would seem to 
complicate matters somewhat, so that the simple 
picture painted within Figure 15.3.01 on the 
previous page3 - is not quite the whole story. Add 
to this the polarity-flip that may occur between 
these different groups during nucleosynthesis and 
the Reimann sphere becomes more than just a 
little cluttered. 
 
 
15.4  The permittivity of free space 
Allied to spin in this model, is the concept of 
charge (see again Chapter 10); where the rotation 
of the proton's 2D membranes within their 
respective faces, each produce their own

 
component of charge. There would also seem to 
be the possibility of a relationship between this 
component and the theoretical surface area of the 
membranes themselves. 
 
Not only is charge an important consideration 
when discussing the tetrakaidecahedron, but the 
use of 'ε0' in Chapter 10 - or the value given to the 
permittivity of free space - would if correct, infer 
a surface area slightly greater than that of a 'flat' 
2D membrane. Both of these inferences should be 
discussed a little more thoroughly. 
 
From the on-line encyclopaedia 'Wikipedia'3, this 
phenomenon that is 'the permittivity of free space' 
(also known as vacuum permittivity) is given the 
definition: 
 
"Permittivity is a physical quantity that describes 
how an electric field affects and is affected by a 
dielectric medium, and is determined by the 
ability of a material to polarize in response to the 
field, and thereby reduce the total electric field 
inside the material. Thus, permittivity relates to a 
material's ability to transmit (or "permit") an 
electric field. 
 
It is directly related to electric susceptibility. For 
example, in a capacitor, an increased permittivity 
allows the same charge to be stored with a 
smaller electric field (and thus a smaller voltage), 
leading to an increased capacitance." 
 
'Wikipedia' goes on to further define the concept 
of 'vacuum permittivity' as follows: 
 
"Vacuum permittivity (also called permittivity of 
free space or the electric constant) is the ratio D/E 
in vacuum. 
 
 

             ε0    =  
 
 

≈ 8.8541878176 × 10-12 F/m (or C2/(N m2)), 
 
where ‘c’ is the speed of light; ‘µ0’ is the 
permeability of vacuum. All three of these 
constants are exactly defined in SI units. Vacuum

  1 
c2µ0 



=    8.824 x 10-09 

=    8.824 x 10-09 
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permittivity also appears in Coulomb's law as a 
part of the Coulomb force constant, 
 

1 
  4π ε0 , 

 
which expresses the force between two unit 
charges separated by unit distance in vacuum." 
            
From the arguments in Chapter 10, there would 
appear to be a (coincidental?) relationship 
between charge (Q); the numerical value applied 
to the permittivity of free space and the calculated 
two-dimensional membrane area of both the 'H' 
and 'S' circular faces. It was therefore possible to 
express this as: 
 

Q ε0  =  A 
  
and this produced a value of: 
 
               2.356 x 10 –28 
 

               2.670 x 10 -20 
 
for the 'H' face 2D membranes - and similarly, 
 
              7.854 x 10 –29 
 

              8.900 x 10 –21 
 
for the 'S' face membranes. 
 
There was an important qualification however, as 
the accepted value of 'ε0' is actually given as 
8.854 x 10-12 F m-1 and the above results therefore 
appear to be a full three magnitudes too large. 
 
Most linear measurements within this model 
however, have been given in centimetres and not 
in metres and this can adjust the above value by 
what amounts to a magnitude of 10 2. This would 
however, still leave a discrepancy of 10 1, because 
the value required for the above expression is 
8.854 x 10-09. This is of course, assuming that the 
effects of this ratio are being felt JUST within a 
three-dimensional environment (i.e. in the world 
where WE make our measurements and 
calculations there from). These rotating, two-
dimensional membranes are not by definition, 
technically three-dimensional though; not in this

 
model. They are certainly derived from the de-
gassing of three-dimensional boundary chords, 
but this de-gassed material is actually single 
dimensional in origin - but must become two-
dimensional because it is a surface area. This 
may sound confusing, but an area cannot 
comprise a single dimension, simply and logically 
because it is defined as length times breadth. This 
means that its value is derived from any two 
single-dimensional entities such as two adjacent 
or opposite single-dimensional de-gassing values, 
(see again Chapter Nine), where any two adjacent 
areas of influence can be said to produce a 2D 
membrane component such as H1+H2; S1+S2; 
H4+H3; S3+S2 etc., etc.. 
 
The 3D mass equivalence of such a two-
dimensional body would therefore be a full 
magnitude LESS than we would measure it here, 
in our world - because of the simple cubic rule 
first introduced in Chapter Three. By this same 
token, three-dimensional effects, measurements 
(other than linear) and ratios, would be felt much 
more strongly by a LESSER 2D observer or 
indeed object - such as the 'H' and 'S' face 
membranes that de-gas because of spin-conflict. 
In other words, one has to balance both sides of 
the dimensional equation and this can be achieved 
by using the analogy of the simple cubic rule 
again, discussed and illustrated earlier within 
Chapter Two (Figure 2.3.01 on page Nine). 
 
One could say that the effects of 'ε0' on the 3D 
world could be likened to the value given to all 
three planes of the cube - i.e. length x breadth x 
depth and therefore in this context, this could be 
expresses as: 
 

3D Value of  'ε0'   =   1000 units (l x b x d) 
 
while in order to arrive at the 2D equivalent 
where: 
 

2D Value of 'ε0'   =   100 units (l x b) 
 
in order to balance both sides: 
 
        1000 units (3D) 
 

                  10 
=   3D value of ‘ε0’  x  10 



=      QH+ 

=     QS- 

=    2.128 x 10-19 QH+ 

=    5.322 x 10-20 QS- 
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We must therefore multiply 'ε0' by ten to arrive at 
the correct magnitude felt by the 2D membranes 
thus: 
 

8.854 x 10 -10  x  10   =   8.854 x 10 –09 

 
This conversion will now give a value that will 
allow us to both complete the charge expression 
on page 130 and to look at what may be deemed 
as evidence of what has already been called 
membrane convexity in an earlier chapter. In 
terms of the individual face membranes, their 
areas can now be calculated thus: 
 
2.670 x 10 -20  x  8.854 x 10 -09    =    2.364 x 10 –29 
 
for each 'H' face membrane and: 
 
8.900 x 10 -21  x  8.854 x 10 -09   =     7.880 x 10 –29 
 
for each 'S' face membrane. 
 
Both results are in square centimetres and 
represent a surface area that is 1.004 and 1.003 
times larger respectively, than those required for a 
simple 'flat' 2D membrane. This also represents a 
difference in accuracy from the originally 
calculated areas of less than half of one percent in 
each case. When one considers the very scale at 
which these membranes would sit in this model, 
the possibility of convexity must at present still 
remain somewhat debatable, although the logic of 
a convex characteristic would seem plausible 
because of their rotation. 
 
 
15.5 Charge 
We are however, now presented with definable 
values of charge for each of the 'H' and 'S' faces 
of the proton; brought about the rotation of their 
corresponding 2D membranes within the confines 
of the face boundary chords. With a different 
angular velocity of rotation, each type (the 'H' 
and the 'S') can be allotted either a positive or a 
negative charge which in this case, would seem to 
suggest a negative for the 'S' because of its 
spinorial implications. We are thus able to

 
calculate the overall charge on the proton as 
follows: 
 
                         (8A H) 
 

                             ε0 
 
which predicts a positive charge for the total 'H' 
face membranes and, 
 
                          (6A S) 
 

                             ε0 
 
for the negative 'S' face membranes; where AH  is 
the individual 'H' face membrane area; AS the 
individual 'S' face membrane area; QH+, the 
resulting overall positive 'H' face Coulomb value 
and QS- represents the corresponding negative 
overall 'S' face Coulomb value. By using the 
original surface areas and ignoring for the 
moment the still debatable issue that is membrane 
convexity; we can calculate the resultant proton 
charge thus: 
 
      (8 x  2.356  x 10 -28) 
 

            8.854 x 10 –09 

 
for the total 'H' face Coulomb value and, 
 
      (6 x 7.854  x 10 - 29) 
 

           8.854 x 10 –09 
 
for the (negative) 'S' face Coulomb value. This 
will now provide the boundary chord proton with 
an overall charge of: 
 
 2.128 x 10 –19 
  -     5.322 x 10 –20 

 
  1.596 x 10 -19  QN + 
 
where QN+ represents here, the Coulomb value 
attributed to the proton without the component of 
membrane convexity taken into consideration. 
Obviously utilising the new surface areas 
calculated on the previous page to represent this 
component, will return a Coulomb value much 
closer to that experienced in the real world. 
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The apparent connection between the calculated 
surface areas of this model's proton and the 
(dimensionally corrected) value given to the 
permittivity of free space is certainly a strange 
one. If one happens to believe in coincidence 
(which doesn't really have any place in science); 
this may simply be one of those chance 
occurrences - but when one considers that this 
value is actually a natural ratio involving the 
displacement of an electric field, these rotational 
groups and the charge they produce within this 
model, begin to appear more plausible. 
 
There is still a question as to the possibility of 
what the author believes to be a very real 
polarity-flip that because of spinorial 
implications, may occur between these different 
groups during the process of nucleosynthesis 
(again, tackled within a later chapter) and this 
will need to be examined as soon as possible. As 
already mentioned on page 128, the Reimann 
sphere pictured in Figure 15.3.01 represents but a 
single rotational group - but as there are seven of 
these, this really does make things a lot more 
complicated in our attempt at describing what 
could be called the dimensional boundary chord 
proton. Added together, all these points may lead 
one to the realisation that the true character of the 
nucleus may involve interactions that do not 
simply involve just three distinct particles as in 
the quark model (and their associated gluons et 
al), but occur between active almost 'cog-like' 
components that rotate as complimentary pairs 
within a unique system of inter-related parts 
(actually thirty-six, three-dimensional parts and 
their 2D membranes). It may be complicated 
purely by the fact that experimenters are looking 
for quarks that aren't really there - and, as they 
say; only time will tell. 
 
 
15.6 The electron’s orbitals 
The placement of an element’s electrons within 
defined orbitals, seem to obey specific rules that 
are the result of intense observation and 
experimentation over the years. Chapter 12 
touched briefly on the early Bohr and 
Schroedinger models, although these have been

 
continually updated and revised since their 
appearance in 1913 and 1926 respectively. The 
concept of specific orbitals, provide areas of 
‘probability’ in which one is likely to find a 
particular electron, although this will not be dealt 
with in any great detail here. Suffice to say, that 
their configuration has yet to be fully understood, 
although there is little doubt that there are 
physical reasons why they are the way they are. 
Perhaps just another one of those coincidences 
that have popped up time and time again within 
this model, their depicted orientation in space 
bears considerable resemblance to the geometry 
of the dim-wave emissions produced by the 
dimensional boundary chord proton’s seven 
rotational groups. 
 
The ‘s’ orbitals are pretty much what one would 
expect and can be visualised simply as shells that 
surround the nucleus (see Figure 15.6.01 below).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.6.01  The atom’s ‘s’ orbitals can be pictured 
as shells of increasing size and are the closest of the 
orbital sets to the nucleus. Orbital ‘1s’ contains the 
electron with the lowest energy.  
 
These contain electrons which have the lowest 
energy, although strangely, orbital ‘2p’ is filled 
prior to the ‘3s’ (see again Figure 12.2.01 on 
page 96). By convention, an x, y and z axis is used 
for orientation. It is when we reach the ‘p’ orbital 
set that things become a little more complicated. 
These are no longer believed to be just a 
continuation of the simple shell-like structures 
seen within the ‘s’ orbitals which 
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appear to  surround the nucleus just like the layers 
of an onion. Instead, the ‘p’ orbitals are usually 
illustrated as balloon-like ‘probabilities’ that 
extend away from the nucleus as pairs, normal to 
the x, y and z axes (see Figure 15.6.02 below). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.6.02  The atom’s ‘p’ orbitals extend away 
from the nucleus as probability pairs, conforming to 
the x, y and z axes. 
 
The big question is of course, why does this 
occur? First of all, none of the orbitals are 
‘precise’ paths that electrons travel; instead, they 
are something like a 95% probability of where 
one would expect an electron to be - thanks to the 
Heisenberg’s Uncertainty Principle and no real 
explanation has ever been provided that may 
answer this question. We have seen however from 
Chapter 12, that the dimensional boundary chord 
proton’s dim-waves produce a caged effect 
between the ‘S’ face and ‘H’ face emissions, 
which can be likened to the effect of the ‘1s’ 
orbital possessed by hydrogen.  
 
When moving to the first ‘p’ orbital however, we 
are actually exploring the characteristics of atoms 
that must contain at least five electrons and this 
will coincide with boron, with a ground state 
electron configuration [He].2s2.2p1 which means 
two electrons in the 1s orbital (the same as 
helium); two in the 2s orbital and one electron in 
the 2p orbital. This infers that we are looking at a 
nucleus that comprises five protons (and five 
corresponding neutrons), each of which will be 
producing its own set of ‘S’ face and ‘H’ face 
dim-waves. The picture of this model’s e-shell 
first shown in Chapter 12 becomes somewhat 
more tangled as a result, as interactions become

 
more complicated. Each proton will still be trying 
to produce its own set of dim-waves, but the 
configuration or bonding of the atom’s protons 
will tend to modify the overall field pattern and 
this is introduced in more detail within the next 
chapter. This new configuration will however, 
continue to follow the geometry and 
configuration of the proton’s faces. 
 
For the ‘s’ orbitals and for the ‘p’ orbitals at least, 
electron capture will continue to be into the 
repulsion gap between ‘S’ and caging ‘H’ face 
dim-waves and the ‘p’ orbitals will adopt the 
symmetry of the ‘S’ faces as shown in Figure 
15.1.01 on page 123.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.6.03  The ‘p’ orbitals will take on the 
symmetry of the proton’s ‘S’ faces due to a 
combination of like to like repulsion and field 
reconfiguration. 
 
Moving on to the still more complex ‘d’ orbitals, 
there is some early indication that these too align 
to the symmetry of the proton but in this case, the 
‘H’ face symmetry (see again Figure 15.1.03 on 
page 124) come into play. This particular 
configuration seems to use components of both 
symmetries and is still being examined at present. 
This will all actually be dealt with in much 
greater detail in Volume 2 of this trilogy. 
 
One final characteristic of the proton/neutron 
system that in this model, has been inherited from
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the whole surviving teddy (and something that 
should also be mentioned at this stage), is the 
phenomenon that was described as the de-gassing 
phase of the neutron earlier in this submission. 
This occurred as the result of a change in the 
surroundings, as whole surviving teddies pinged 
into what was effectively a more rarefied (4D 
expansive) environment as opposed to the 8D 
lattice from whence they came. This resulted in a 
proportional amount of boundary chord material 
de-gassing to form the face membranes of the 
proton. This would ultimately provide the subtle 
difference between what was effectively the 
original neutron - and the Stage 2 reconfigured 
proton.  
 
During this early event, the universe would not 
only have been extremely crowded - it would not 
have had the chance to expand very much either.

 
As a consequence, this rarefied environment 
(compared to the teddies and IDBCs original 
surroundings), would not be as rarefied as it has 
become today - all as a result of the universe's 
component of continued four-dimensional 
expansion. As the de-gassing phenomenon in this 
model would have a direct relationship to 4D 
expansion itself, this may imply that a greater 
input of kinetic energy is required to reverse this 
boundary chord process of de-gassing in the 
present. In other words, the processes associated 
with bonding may have been slightly different 
(originally) when compared to those taking place 
today. This may be quite an important 
consideration when discussing the possibility of a 
'polarity-flip' within the structure of the proton - 
and this will be looked at in somewhat greater 
detail within the next two chapters of this 
offering. 
 
 


